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Many researchers have studied pressure pulsations that arise in jets, separated flows, and bottom flows. Certain 
investigations devoted to oscillatory processes in Hartmann resonators were discussed in [1]. Such processes have been 
modeled by the method of coarse particles, the Chudov-Roslyakov finite-difference scheme, the Godunov-Kolgan scheme, 
and other methods. 

In an experiment conducted in [2], stable pressure pulses were obtained in a supersonic flow past a hollow cylindrical 
body (cylinder) with its open end facing the incoming flow. In [3], the experimental data obtained in [2] was compared with 
results calculated on the basis of kinetically consistent difference schemes. Good agreement was obtained with the 
experimental data within the region of Reynolds numbers Re~ _> 105, where the effect of Rer on the main characteristics 

of the process (mean shock-wave decay, amplitude of shock-wave pulsations, period of oscillation, standard deviations of the 
pressure pulsations) is negligible. 

Here, we use the Godunov method to examine the problem of the supersonic flow of an inviscid gas past hollow 
cylindrical bodies. It is shown numerically that it is possible to control oscillatory flow regimes by the injection of gas from 
the bottom of the cavity. 

1. We will examine the flow of an ideal gas with the Mach number M~. = 3.7 about a cylinder (Fig. 1). The 
geometric characteristics of the cylinder (//D = 1.6, 6/D = 0.04) are the same as in [2, 3]. 

The equations of gas dynamics are as follows in the cylindrical coordinate system [4] 
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= 0 ,  

where p is pressure; p is density; u and v are components of the velocity vector along x and r (we assume that the component 
associated with the angle ~o is equal to zero); e is the total energy of a unit mass of the gas; t is time. The system is closed by 
the equation of state of an ideal gas. 

The quantities were converted to dimensionless form as follows: 

r = ~ D / 2 ,  x = s  t=tD/2aoo,  a=aaoo, 

u = ftaoo, v = ~aoo, P = PPoo, P = ~ p o o a ~  

(a~. is sonic velocity in the incoming flow and D is the diameter of the cylinder (see Fig. 1)). 
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As the initial data, we used dimensionless parameters of the undisturbed incoming flow: 

p = poo = 1/7 ,  p = poo = 1, u = Uoo = Moo, v = 0 

(3' is the adiabatic constant, 3" = 1.14 in the calculations). Here and below, we drop the bars above the dimensionless 

quantities r, x, t, a, u, v, P, and p. 

As the boundary conditions, we adopted the condition of nonflow on the surface of the body and the conditions 
characterizing the incoming flow. The rectangular region ABCD (Fig. la) included the immediate neighborhood of the body 

in the meridional section. The parameters of the incoming flow were assigned on side AB upstream of the body (the "inlet 

boundary"). Conditions corresponding to continuous zeroth-order continuation ("smooth conditions") were assigned on the 
other sections of the boundary of the theoretical region. 

The problem was solved by the method of decay of an arbitrary discontinuity [4]. The through computing scheme 

made it possible to avoid the problems connected with having to identify the surfaces of discontinuity and satisfy 

compatibility conditions on these surfaces. 

2. Calculations were performed on rectangular grids with dimensions ranging from 60 x 40 to 100 x 40. The 

distribution of the grid nodes within the cavity was uniform, but the ratio of the dimensions of the sides of the ceils was 

varied for different grids: Ar/Ax = 1-0.4. The increments of x and r increased with increasing distance from the surface of 

the cylinder, allowing us to correctly choose the boundary of the calculated region (with allowance for influence regions). 

In all of the variants, we obtained pressure pulsations on the cavity bottom whose amplitudes were closely related to 

the amplitude of the shock wave in front of the edge of the cylinder A* = A'/D (see Fig. 1). The same phenomenon was 

observed in [2, 3]. The Strouhal number Sh = s/ao t~ calculated on different grids, was within the range Sh = 0.23-0.26 (Sh 

= 0.25 in the experiment in [1], Sh = 0.246 in the calculation in [3]). Here, t o is the period of oscillation; a o is sonic 

velocity at the stagnation temperature; s = (l + A) is the characteristic length (see Fig. 1). 

The mean decay of the shock wave A ~ = A/D and the amplitude of the pulsations increased with a decrease in the 

ratio of the sides of the grid ceils Ar/Ax inside the cavity, which can probably be attributed to the effect of approximate 

viscosity. In practice, this effect is manifest only in regions with large gradients: on the shock wave, near the surface of the 

body, in a flow separation region, etc. In this case, the coefficient of system viscosity (and, thus, the width of the resulting 

"diffuse" shock wave) depends on local flow velocity and cell size [5]. In the experiment in [2], a sharp increase in the mean 

decay of the wave and the amplitude of the pulsations was seen with a decrease in Reo. in the neighborhood Reo, = 105. 
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Comparison of our results with the results in [2] showed that the main pulsation characteristics obtained from 

calculations on a 100 x 40 grid (Ar/Ax = 1) (Sh = 0.252, A ~ = 0.33, A* = 0.12, a ~ = a/po' = 0.2), agree well with [2] 

for Re~, > 105. Here, a represents the standard deviations of the pressure pulsations on the bottom of the cylinder; P'o is the 

total pressure behind the normal shock wave. The values Sh = 0.237, A ~ = 0.4, and A* = 0.3 on the 100 • 40 grid (Ar/Ax 

= 0.4) are close to the experimental data for R%. = 5.104 (values of a were presented in [2] only for Re~. > 105). It 

should be noted that the values calculated in [3] for Re~. = 5-104 (A ~ = 0.3 and A* = 0.08) agree with the experimental 

data reported in [1] for Re~. >__ 105. Figure 2 shows the change in pressure at the center of the bottom of the cavity and the 

decay of the shock wave from the cylinder edge 2x (the decay was referred to the radius of the cylinder). It is evident from 

Fig. 2 that the calculated results (+ ' s )  obtained on a 100 • 40 grid (Ar/Ax = 1) agree satisfactorily with the data from [3] 
(lines). 

3. The velocity vector in the cavity periodically changes direction during the pulsations, as noted in [3]. To explore 

the feasibility of controlling this process, we conducted a series of calculations in the presence of injection from the bottom 

of the cylinder. As was shown in [5] in the solution of a similar problem (involving supersonic flow past a cylindrical end at 

M~ = 3.5 with the injection of a sonic jet from an annular slit counter to the flow and parallel to axis of symmetry), Euler's 

equations for unsteady conditions can be used in the given case, since turbulent exchange plays the main role in the regions 

in which the jet mixes with the incoming flow. At the same time, according to the calculations and comparisons with [1, 5], 

the effect of approximate viscosity is similar to the effect of the transport properties of a turbulent flow. This similarity can 

be said to exist because the properties of the resulting numerical flow are qualitatively similar to the phenomena observed in 
a turbulent flow with Re = 105-107. Thus, the flows with injection considered in this investigation can also be studied by 

constructing the numerical model on the basis of Euler's nonsteady equations with an approximate dissipation mechanism that 
leads naturally to the structure of the approximation itself [5]. 

In the presence of injection, the above-described formulation of the problem of external flow on the body must be 

supplemented by assigning conditions that express the discharge of the jet at the sonic velocity M d = 1. For this, the 
parameters of the jet were assigned to the corresponding cells of the grid on the surface of the body. We examined the 

injection of an annular wall jet with dl/D = 0.84 and d2/D = 0.92 (Fig. lb) and an axial jet with dl/D = 0 and d2/D = 
2 2 

0.08 (Fig. lc). Injection rate k = Paud/P~.u~ was varied within the range k = 0.1-1.5. The parameters of the jet in the 
calculations whose results are shown below were as follows: M d = 1, u d = - 1 ,  v d = 0, Pd = kM2,  7d = 1.4. As the 

initial data, we used the field of gasdynamic characteristics obtained in a calculation performed without injection for the 
moment of time t = 51. 

The calculations showed that the injection of low-intensity axial jets into the cylinder produces more energetic 

pulsations than in the absence of injection. Figure 3 shows the change in pressure at the center of the bottom of the cylinder 

and the decay of the shock wave with the injection of an axial jet of intensity k = 0. I. It is apparent that the changes in the 

these parameters take the form of increasing and decreasing oscillations with the period t 1 -- 80. We see that the wave 

periodically (t 2 = 240) decays particularly rapidly, with A* --- 0.8. The latter value is twice as great as the amplitude of the 
wave pulsations obtained on the same grid without injection. 

An increase in the rate of injection of the axial jet (k = 0.25) is accompanied by a sharp increase in the amplitude of 

the shock (by an average factor of two compared to the variant without injection). At peak levels of decay, repeating with the 

period t --~ 650 (calculations were performed up to t ~ 2000), the amplitude was commensurate with the length of the 

cylinder A* = 2. After these peaks, the pulsations in the cylinder decreased over the period t --- 160 (the velocity vector in 
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the wall region was oriented counter to the incoming flow). The pulsations were subsequently reestablished over a period t --- 

80 (the velocity vector in the wall region again began to periodically change directions). 
The injection of an annular jet (Fig. lb) orients the velocity vector counter to the incoming flow in the wall region of 

the cavity. Decay of the pulsations is seen with an injection rate k = 0.5 (Fig. 4). The flow remains steady up to k = 1, 
while decay of the shock wave increases somewhat (A ~ --- 0.55). A further increase in injection rate (k = 1.5) leads to 

interaction of the jet with the shock wave, causing the flow pattern to become distinctly unsteady in character. 
Comparison of the data calculated with the use of different grids showed good qualitative agreement. There were 

some differences in the amplitudes of the pulsations and mean shock decay. As noted previously, these differences are related 

to the effect of approximate viscosity, which depends both on the structure of the flow and on the geometry of the grid. The 

results shown in Figs. 3 and 4 were obtained on a 100 x 40 grid (Ar/Ax = 0.4). 
Thus, as the calculations showed, it is possible to control the pulsation process by regulating injection rate and the 

location of the injected jet on the bottom of the cavity. 
We thank V. I. Kholyavko for showing interest in our investigation and discussing the results with us. 
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